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Abstract

Melt layer erosion by melt motion is the dominating erosion mechanism for metallic armours under high heat loads.

A 1-D fluid dynamics simulation model for calculation of melt motion was developed and validated against experi-

mental results for tungsten from the e-beam facility JEBIS and beryllium from the e-beam facility JUDITH. The driving

force in each case is the gradient of the surface tension. Due to the high velocity which develops in the Be melt con-

siderable droplet splashing occurs.

� 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

In ITER-FEAT tungsten is foreseen as armour ma-

terial everywhere in the divertor except at the separatrix

strike point (SSP) region where carbon fiber composites

presently are foreseen and beryllium is foreseen as first

wall (FW) armour material. During off-normal events

the divertor and FW armour might experience heat

loads of the GW/m2 level. Such heat loads result in

melting and evaporation [1]. Due to the rather long ex-

posure times the melt layer thickness of the metallic

armour will become several hundreds of microns. Forces

acting on the melt layer induce a motion of the melted

material. As a consequence of this melt layer erosion,

melted material is flushed to the periphery, a rather deep

erosion crater appears and at the crater edge large

mountains of resolidified material are produced. Melt

layer erosion will determine the lifetime of the metallic

armour because of its potential to form craters hundreds

of microns deep and therefore has to be analyzed care-

fully [2].

Forces which might cause melt layer erosion are the

gradient of the total pressure above the heated surface

given as a sum of the recoil pressure of the evaporating

material and of the pressure of the plasma shield formed

in the course of the evaporation, the gradient of the

surface tension which arises because of the surface

temperature gradient along the surface of the melt layer

and Lorentz forces due to currents flowing in the melt

layer during the heating period. For the calculation of

the melt motion under the action of external forces a

preliminary 1-D fluid dynamic simulation model was

developed and the first results using this model were

reported [3]. Meanwhile a more detailed numerical

model was elaborated. The model and its validation

against experimental results on melt layer erosion of

tungsten samples from the electron beam facility JEBIS

[4] and beryllium samples from the JUDITH facility [5]

are described.

2. The 1-D fluid dynamics simulation of melt motion

Heating of the armour occurs as surface and as vol-

umetric heating. Hot plasma impact produces surface

heating, electron impact (as occurring for runaway

electron impact) results in volumetric heating. Both

heating scenarios have to be taken into account. In the

case of a disruption heating occurs in the divertor with a

characteristic heat load profile with its peak value at the
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SSP. As a consequence, the external pressure and the

surface tension depend on the position along the melt

surface. The resulting forces due to the pressure and

the surface tension gradients together with the Lorentz

force act on the melt layer and might induce melt motion.

In case of a VDE on the FW the heat load is relatively

constant along the armour surface. Gradients of pressure

and surface tension are not occurring. In this case the

only external force is the Lorentz force caused by quite

large Halo currents flowing into the structure [6].

For a derivation of the mathematical model for melt

motion the following assumptions are used: the thick-

ness of the melt layer is much smaller than the width of

the molten layer and pressure gradients across the melt

layer are absent. Therefore there exists only a velocity

component parallel to the surface and a melt velocity

averaged over the molten layer can be used for de-

scription of the melt motion. In this case the �shallow
water� approximation can be applied for the mathe-

matical description of the melt motion [7,8]. The fluid is

assumed to be incompressible. Temperature dependent

thermo-physical data are used. The physical processes

taken into account in the numerical model are: heating,

melting, evaporation from the surface and resolidifica-

tion, heat transport in the liquid and the solid, viscosity

and melt motion by the following forces: surface tension,

total external pressure, Lorentz force due to external

and Eddy currents.

The melt layer and the melt motion are shown

schematically in Fig. 1 for a vertical target with the SSP.

The x-coordinate is along the surface being positive

upstream from the SSP, the z-coordinate is into the layer

and the y-direction is the toroidal direction, with By the

toroidal magnetic field. The base system of Navier–

Stokes equations [8] together with the heat conductivity

equation describe the problem:

divv ¼ 0; ð1Þ

q
ov

ot

�
þ vrv

�
¼ �gradp þ lDvþ FLorentz; ð2Þ

qC
oT
ot

þ vgradT ¼ rðjrT Þ þ Q; ð3Þ

with v, T, q, C and j the velocity, temperature, density,

specific heat and heat conductivity, l the viscosity of the

melt, and p the pressure. Q is the sum of the volumetric

heating ðQVÞ, the Joule heating ðQJÞ and the dissipation

of the kinetic energy due to the viscosity ðQlÞ. QJ is given

as QJ ¼ J 2=r with J the current into the sample and r
the electrical conductivity. For a potential flow Ql is

given as Ql ¼ l gradv2 [8]. The following boundary

conditions are applied at the liquid–vapor boundary:

� j
oT
oz

����
surf

¼ W ðtÞ � qVevDHev; ð4Þ

l
ovx
oz

¼ oa
ox

: ð5Þ

In Eq. (4) the temperature gradient is calculated at the

surface,W ðtÞ is the surface heat load,DHev the enthalpy of

evaporation and Vev the velocity of the evaporation front.

Eq. (5) is the boundary condition for the liquid–vapor

interface. It describes the balance between the forces of

the gradient of the surface tension and the friction force in

the liquid. vx is the velocity component along the surface

and a is the surface tension coefficient. At the melting

front (z ¼ zm) the velocity of the melt motion is assumed

to be zero and the classic Stefan boundary condition is

applied to the solid–liquid interface:

js

oTs
ox

����
z¼zm

� jl

oTl
ox

����
z¼zm

¼ qVmDHm: ð6Þ

The index s refers to the solid and index l to the liquid

phase, Vm is the propagation velocity of the melt front,

DHm is the enthalpy of melting.

The shallow water approximation allows to simplify

the system of Eqs. (1)–(3) with the boundary conditions

(4)–(6) to a system of quasi 1-D equations. The fluid

velocity v is averaged over the melt layer thickness as-

suming a parabolic dependence. After averaging Eqs. (1)

and (2) with the boundary condition (Eq. (5)) the system

of equation of the St. Venant type [7] for describing the

melt layer motion is obtained according to

Fig. 1. Melt layer and melt motion for a vertical target sche-

matically shown in poloidal plane, y denotes the toroidal di-

rection.
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with b a geometric coefficient (0 for Cartesian and 1 for

cylindrical geometry), h the melt layer thickness, ux the

mean velocity of the melt layer, Jz the z component of

the current into the sample, By the toroidal magnetic

field, m ¼ l=q the kinematic viscosity, and ka ¼ oa=oT
with negative ka. A linear dependence of the surface

tension on temperature is assumed. The second term on

the right-hand side of Eq. (9) describes the friction due

to an increment of the fluid mass, the third and fourth

terms describe effects of viscosity, the fifth term describes

the effect of surface tension and the last term the volu-

metric Lorentz force. The second term on the left-hand

side in Eq. (7) describes the velocity of the melt surface

due to melt ejection. Thus the total velocity of melt

surface motion Vsf is given by Eq. (8).

The heat conductivity equation (3) after transfor-

mation into a moving coordinate system attached to the

melt layer surface splits into two equations for the solid

and the liquid phase and can be written in the following

form:

qC
oT
ot

¼ o

oz0
j
oT
oz0

� �
þ qCVsf

oT
oz0

þ QV þ J 2

r
; ð10Þ
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C
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z0 ¼ zþ
Z t

0

Vsf dt: ð12Þ

The heat conductivity equation (Eq. (10)) describes

the heat transfer through the liquid and the solid phase.

Eq. (11) describes the heat transfer along the surface due

to melt motion with the term on the right-hand side

describing the viscosity heating. Eq. (12) describes the

coordinate transformation into the moving coordinate

system. The surface evaporation model described in [9] is

used for the calculation of the evaporation process and

the evaporation recoil pressure.

The system of differential equations (7), (9)–(11) with

boundary conditions (4) and (6) together with Eqs. (8)

and (12) describes the melt motion problem. To simplify

the solution of the problem the splitting procedure is

applied. In this method the full time step calculation is

split into four substeps following each other and taking

into account different physical processes. In the first

substep the heat conductivity equation (10) with the

boundary conditions (4) and (6) is solved without melt

motion using an implicit numerical scheme [10]. For

determining the position of the melt (resolidification)

front and the velocity of its propagation, Vm, a special

scheme with fixed time mesh and moving line of phase

transition through the spatial meshes is applied [11] (in

fact, the position of the phase transition front does not

coincide with the mesh border and this line divides a

mesh into two non-equal meshes). Because of the non-

linearity of the resulting difference equations an iteration

process is used until convergence of Vm and of the real

position of the melt front inside the meshes is achieved.

In the second substep the Eqs. (7) and (8) are solved

using the explicit difference method [10]. In the third

substep Eq. (11) is solved using a standard explicit dif-

ference scheme and in the fourth step the surface evap-

oration model is applied for a determination of the

evaporation and recoil vapor pressure. An analogous

approach was applied for numerical simulation of laser

material processing. In this case the recoil pressure of

evaporation is responsible for melt motion and crater

formation [12].

3. Results on melt layer erosion and discussion

3.1. JEBIS electron beam experiments with tungsten

At the e-beam facility JEBIS experiments on melt

layer erosion of tungsten samples were performed using

70 keV electrons [4]. The beam impact was perpendic-

ular to the target surface, a magnetic field was not ap-

plied. The quoted absorbed peak energy density was 2.3

MJ/m2 with Gaussian power density profile and heat

load duration of 1.8 ms. Calculated results for a tung-

sten sample initially at room temperature and the quo-

ted 2.3 MJ/m2 and 1.8 ms showed no melting, but the

measured value of the crater depth was 27 lm and the

residual melt layer thickness about 110 lm [13]. In-

creasing the heat load to 2 GW/m2 showed melt layer

erosion. Therefore, for the numerical simulation an ab-

sorbed heat load of 2 GW/m2 was used. The dominating

force responsible for melt motion in tungsten under

these experimental conditions is the gradient of the

surface tension. Its influence on the calculated crater

depth is demonstrated in Fig. 2 for different surface

tension coefficients assuming that the value of the sur-

face tension at the melt temperature is as given in liter-

ature [14]. Assuming a ka value of �9� 10�5 N/mK the

calculated crater depth is 35 lm and the residual melt

layer thickness is 95 lm in good agreement with the

measured value. For an initial sample temperature of

1000 �C the measured crater depth was 120 lm the
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residual melt layer thickness 110 lm and the mass loss

up to 2 mg. This small mass loss means that droplet

splashing is rather small. Numerical results on crater

depth and remaining melt layer thickness are shown in

Fig. 3 for an initial sample temperature of 1000 �C for

the two different absorbed energy densities 2.3 and

3.6 MJ/m2 and using the above given ka value. Again for

2.3 MJ/m2 the calculated melt layer erosion values are

too small. Only when increasing the heat load to 2 GW/

m2 there is reasonable agreement with the measured

crater depth. From the calculated melt layer thickness of

130 lm without melt motion it is seen that the crater

depth gets the size of the static melt layer. Calculated

melt velocities are up to 25 cm/s. Droplet splashing due

to the small melt velocity and the rather high surface

tension (laminar flow of molten metal) will be rather

weak in accordance with the measured rather low mass

loss.

3.2. JUDITH electron beam experiments with beryllium

Fig. 4 shows experimental results on maximum crater

depth in beryllium samples from the JUDITH e-beam

facility with 120 keV electrons for two different experi-

mental campaigns [5,15]. Concerning the quoted de-

posited energy density the results from the different

experimental campaigns are not consistent. A compari-

son of experimental and numerical results therefore can

give only indications but no final answers concerning the

crater depth in the exposed beryllium. Assuming that the

thermal properties of the melted and resolidified beryl-

lium remain unchanged then the remaining residual melt

layer thickness per shot is about 350 lm. Numerical

results on crater depth and residual melt layer thickness

are shown in Fig. 5 for a peak power density of 1.1 GW/

m2 corresponding to the lower absorbed energy density

of 5 MJ/m2 according to Fig. 4. The calculated crater

depth is 220 lm and the residual melt layer thickness

is 80 lm , evaporation accounts for only 5 lm. Melt

Fig. 2. Calculated crater depth of tungsten under the JEBIS

experimental conditions with 2 GW/m2 and 1.8 ms, for different

coefficients of the surface tension. The initial sample tempera-

ture is room temperature.

Fig. 3. Calculated results on crater depth and residual melt

layer thickness of tungsten under JEBIS conditions in cylin-

drical geometry for the two cases with the different peak power

densities of 1.3 and 2 GW/m2. The initial sample temperature is

1000 �C, the heat load duration is 1.8 ms.

Fig. 4. Depth of the erosion crater of beryllium measured at the

JUDITH facility for different absorbed energy densities. Heat

load duration is 5 ms. The initial sample temperature is room

temperature.
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motion transports hot melted material to the colder

periphery. As a consequence the temperature in the

center of the melt drops and evaporation decreases.

Therefore the experimentally determined rather large

mass loss of typically 1 mg in five shots [5] corre-

sponding to an erosion crater of about 80 lm is not

caused by evaporation. The calculated velocity of the

melt motion is almost up to 80 cm/s. This rather large

velocity in combination with the low surface tension

causes considerable droplet splashing which amounts up

as much as 10% of the melted mass in these experiments.

Calculated and experimental results on the crater depth

of Be are in reasonable agreement only when assuming

the lower value of 1.1 GW/m2 for the peak heat load.

The crater depth becomes comparable or even larger

than the static melt layer thickness calculated without

melt motion. The forces responsible for melt motion in

beryllium are the gradient of the surface tension acting

till complete resolidification which needs in these ex-

periments 9 ms after heating stops and to a lesser extent

the reactive force of the evaporating atoms which acts

during the heating period. Marangoni convection flows

in the melt [16] and impurities present in the sample

which change the surface tension might be responsible

for the considerable larger residual melt thickness in the

measurement.

4. Conclusions

A 1-D fluid dynamics model for calculation of melt

motion was developed and numerical results on crater

depth and residual melt layer thickness were compared

with experimental results for tungsten and beryllium

from the e-beam facilities JEBIS and JUDITH. The

crater depth in all experiments becomes comparable to

the static melt layer thickness calculated without melt

motion indicating that the melt layer continuously is

removed by melt motion. In these experiments, because

of the small size of the heated area and the absence of a

magnetic field, the external force from the gradient of

the surface tension is responsible for the melt motion.

Qualitatively the numerical simulation describes the

observed melt layer erosion. However using the heat

load given in the experiment the calculated crater depth

for tungsten and JEBIS conditions is too small. Rea-

sonable agreement is only obtained when the peak en-

ergy density is increased from 2.3 to 3.6 MJ/m2 (heat

load increase from 1.3 to 2 GW/m2). For the beryllium

results at JUDITH the energy densities from different

experimental campaigns are not consistent. A compari-

son of experimental and numerical results therefore can

give only indications but no final answer concerning the

crater depth in the exposed beryllium. The rather large

erosion craters indicate that the use of a metallic diver-

tor and FW armour in tokamaks under the conditions of

off-normal events with high heat loads might become

problematic.
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